High School Reform

Can all students succeed at science and technology high schools?

No longer only for the elite, a new generation of science high schools could help low-income and minority students get better jobs

Students study the human body on skeletons, using clay to make organs.

NEW LONDON, Conn. — When Lou Allen started the Science and Technology Magnet High School of Southeastern Connecticut in 2005, he didn’t woo the state’s top students. Instead, in accordance with state law, admission was based on a lottery. Allen’s goal was to recruit more low-income Hispanic and black students, who for too long were blocked out of schools exclusively for math and science because their grades fell short of perfection. “It’s all strictly luck,” said Allen of New London’s admissions policy. “We take whoever we get and we pride ourselves on that.”

The Connecticut school is part of a new generation of inclusive science and technology high schools that have become more popular in the last decade. Barbara Means, an educational psychologist at SRI International, a California-based research institute, says that while there is no hard data on the number of these schools, a reasonable estimate would be somewhere between 250 and 500.

These new high schools, which rely on open admissions instead of competitive criteria like tests and grades, have multiplied to meet the exploding demand for workers with math, science and technology skills.

“For too long in the United States, the notion was that engineering and math were only for these smart, nerdy kids,” said Sharon Lynch, a science education professor at George Washington University in Washington, D.C. “Where we are in our lives right now, everybody needs those skills.”

White and Asian students dominate advanced science and math classes in high school. In 2008, 9 percent of Hispanic and 10 percent of black students in the U.S. took advanced algebra or calculus, compared with 22 percent of white students and 43 percent of Asian students, according to the National Math + Science Initiative, a group working to boost student performance in these fields.

Related: The biggest hole in the STEM pipeline starts before kindergarten

One way to close that racial gap, educators argued, was to create more science and technology high schools for all students, schools where students could be coached to get through tough courses, regardless of ability.

Often, students struggling in these subjects find ways around taking them in traditional high schools, and, lacking the mandatory prerequisites, are ineligible to take advanced math and science classes in college.

The goal behind the creation of the science high schools was to make sure these students took, and then got through, the calculus and chemistry courses they needed to pursue science and technology careers and also to expose them to the mentors and internships that may give them a leg up in these fields.

Educators are only beginning to discover if all this is actually happening. But preliminary research on inclusive science and technology high schools is promising, said Lynch, who participated in two studies, one comparing typical inclusive science schools to traditional high schools and another looking at exemplary inclusive science schools.

“The trends are all in the right direction,” she said.

Students review material for a final exam in biomedical science at Science and Technology Magnet High School of Southeastern Connecticut.

In the most recent of these studies, presented to the American Educational Research Association in June, Lynch and Means looked at 39 inclusive science and technology schools and 22 traditional high schools in North Carolina and Texas. They controlled for student demographics and achievement before high school. Information was based on surveys of 12th graders in 2012 in North Carolina and 2013 in Texas.

While student performance on standardized tests at both the inclusive science and traditional schools was similar, students at the inclusive science schools had taken more college preparatory classes like calculus and chemistry.

In North Carolina, 60 percent of seniors at the science schools had taken calculus or precalculus on average, compared to 38 percent at traditional high schools. In Texas, the difference was smaller but still higher at science schools.

In both states, the students at science schools also took more advanced science courses, said Means. In North Carolina, 46 percent of students at science schools took one or more engineering course compared to 23 percent at traditional schools. In Texas, it was 58 percent compared to 16 percent.

Test score differences were not large, said Means, but in North Carolina, the ACT science score was significantly higher for the inclusive science high school students: 19.24 to 18.34.

D. Major Roman, a junior at Science and Technology Magnet High School of Southeastern Connecticut, shows a bottle he designed in 3D animation class.

While test scores don’t spell achievement, Lynch said the inclusive science school group was better prepared for college-level mathematics. Students in traditional schools didn’t have counselors and teachers pushing them into advanced math and science classes, she said. For instance, if they failed Algebra II — a prerequisite for precalculus — they weren’t encouraged to take it in summer school because Algebra II is not a graduation requirement. At the science schools, the expectation was that students would take higher math at some point, so they were tutored until they passed the Algebra II prerequisite.

Related: A solution as obvious as it is rare: Making high school graduates ready for college

Students at the inclusive science schools also reported better relationships with their math and science teachers, had modestly higher grades and were more likely to say they planned to major in a science or technology field in college.

In North Carolina, 89 percent of students at science schools said they were interested in a career in a science or technology field compared to 82 percent in general. In Texas, it was 88 percent versus 83 percent, according to Means.

Researchers did not compare students in inclusive science schools to those in competitive ones, noting that those at select schools entered high school at higher achievement levels and there is little doubt they’d attend college.

“I’m sure the students at the selective high schools are doing better in the 12th grade than those in inclusive high schools, but they came in above,” said Means. In lottery-based schools, the goal is to make sure students are prepared for college-level math and science, enabling them to major in these areas, and maybe move on to careers in science and technology — a path that is impossible without a solid grounding in math before college.

In a separate study, Lynch and a team of researchers, including Means, looked at eight model inclusive science high schools in seven states to see what they had in common and what they were doing that others weren’t. One common thread, she wrote in a report on her work, was that students saw themselves as capable in math and sciences and were comfortable using technology.

The schools shared other traits, such as support for underrepresented students, early college-level courses, project-based learning and partnerships in the field.

Like most small schools, inclusive science high schools have fewer students than traditional local high schools, sometimes fewer than 500 students compared to as many as 5,000, making it easier for students to get more attention and, in some cases, pressuring them to perform.

Lisa Sachatello, a math teacher at Science and Technology Magnet High School of Southeastern Connecticut, said her students stay after school for extra help.

Aimee Kennedy, a former teacher at a large urban high school who later became a principal at Metro Early High School in Columbus, Ohio has direct experience with the different approaches taken by the two programs. At the inclusive science school, she said, the expectations were higher for both students and teachers. “The message was, ‘We are not having a conversation about getting the minimum credits you need to graduate high school.”

At Science and Technology Magnet High School of Southeastern Connecticut, teachers report students staying after school for tutoring and taking advantage of any help that is available.

“They never go home,” said math teacher Lisa Sachatello. Like Kennedy, she previously taught at a traditional high school where, she said, “at 2:20 p.m., there was barely a person in sight. I have less time to myself now, but in a good way.”

Audrey Waterman, 17, a senior at the magnet school who’s headed to the University of New Hampshire this fall, said she stayed late every Wednesday with Sachatello to go over algebra.

Educators say engagement at these schools is also key to keeping students focused and moving forward. “You have to entertain them nowadays as much as educate them,” said Gary Hales, principal of Wayne School of Engineering in Goldsboro, N.C., a 10-year-old inclusive science high school that participated in Lynch’s case study. Students will accept challenging classwork if they enjoy coming to school and are having fun, he said.

The Science and Technology Magnet High School of Southeastern Connecticut has also adopted this philosophy, offering classes that include hands-on learning. For example, among the offerings are classes in 3D animation in which students spend weeks honing shapes and bottles on a screen; a biomedical science class, where there are two-foot statues of humans to which students add organs that they make out of clay; and a sports medicine class that has simulated images of patients, controlled by an iPad so that teachers can create high blood pressure or a faint pulse for students to monitor.

A simulated man, controlled by an Ipad, is one tool teachers use to show students how to monitor a pulse and other medical conditions.

The student body at the northeastern school is diverse: 42 percent Hispanic, 28 percent black, 23 percent white, and 2 percent Asian. In addition, 64 percent are low income, 17 percent are not fluent in English and 18 percent have a disability, according to the school’s state profile in 2013.

The school requires freshmen to attend a two-week academy before starting school and there is a four-week program for students at nearby Three River College in Norwich, Connecticut.

Many of the teachers have worked in technical fields, in medicine or banking — or logging in years as engineers — and have switched to education. That life experience, said Lynch, is critical. “They are good because they know the field,” she said. One third of the inclusive science teachers in her study were career changers. “A lot of the guiding is done by the teachers, not the guidance counselor.”

Students entering inclusive science schools often lack the math skills needed to easily advance to high-level courses, so these schools dedicate many resources to boosting basic math ability.

Means said that math scores and the difficulty of courses are among the best predictors of whether students will choose a science or technology major in college. “Students come in years behind in terms of math skills and that is one of the biggest challenges these [high] schools face,” she said.

Joyce Wooten, who graduated from Wayne School of Engineering in 2014, said she wasn’t comfortable with math until her junior year of high school. “It was always my weak spot,” she said. Now in college, she’s pursuing a degree in sports management and is happy she persisted in her math classes. “You’ll never get away from math in any field,” she said.

At the Connecticut science school, Laurelle Texidor, the current director, is working with middle school principals to build student math skills and flag the ones who need help in freshman year.

That will not be an easy task, according to researcher Means. “Keeping kids motivated to get through math is difficult for these schools,” Means said. “They don’t have on average very impressive math scores in grade 12. They have scores similar to comprehensive high schools and you want those grades higher for college but they have taken the math courses.”

Junior Aimee Riddick thinks the rigorous math and science classes she takes at the Science and Technology Magnet High School of Southeastern Connecticut will give her an advantage in college and her career.

Teacher retention also takes time, as Hales at Wayne Engineering discovered. Some of the teachers he recruited, who agreed to work long days and attend daily meetings, found the accountability and time demands tough to sustain. “You can’t just close your door and go home at the end of the day,” he said.

This school year, 2016-2017, is the first time he hasn’t had to replace a teacher for the fall, something he describes as a triumph.

Related: As the race to expand STEM education enters its next lap, here are three ways to recruit and train more teachers

Researchers are still figuring out whether students who attend inclusive science high schools do, eventually, go into technical fields. Although more of these students say they intend to pursue math and science professions than those in traditional high schools, it has been difficult to track students once they start college, said Lynch.

So far, blacks still lag behind whites in science fields. A study released by U.S. News & World Report in 2015 found the percentage of bachelor’s degrees granted to white students in science and technology grew from 16.8 percent in 2009 to 19.5 percent in 2014. During the same period, the percentage of bachelor’s degrees granted to black students in science and technology has grown more slowly, from 12.7 percent to 13.6 percent.

In 2013, the National Center for Education Statistics, which tracked more than 20,000 students who started high school in 2009, released statistics that showed a still-startling racial gap in science and technology education. The breakdown of the almost 14 percent of all public school students who took calculus was 45 percent Asian, 18 percent white, 10 percent Hispanic and only 6 percent black.

For employers, this means it is hard to find qualified workers, and even harder to find qualified black or Hispanic workers, to fill jobs in technology. Kennedy, the former Ohio principal, who is now a vice president at Battelle Memorial Institute, a research company in Columbus, Ohio, said “I see job openings that we can’t fill and I have the suspicion that there are people who, had they been given the right opportunities, could fill those jobs.”

Even if students don’t go into technical fields, she said, the education they receive at inclusive science schools prepares them for the work force. “It’s not really about the sciences or math or engineering, it’s really about a way of thinking, of solving problems, being adaptive, being persistent,” said Kennedy.

Aimee Riddick, 16, a junior at Southeastern Connecticut who described herself as “horrible” in math and with computers, is looking to study sports therapy in college. She’s soldiered on in her courses and is puzzled by the stereotype that these classes are only for elite students. “Everything revolves around math and science. I wouldn’t call people who study them geeks. They are just getting their career correct.”

This story was produced by The Hechinger Report, a nonprofit, independent news organization focused on inequality and innovation in education.

Unlike most of our stories, this piece is an exclusive collaboration and may not be republished.

Add Comment
comments powered by Disqus